Group 4 Metal Complexes of the Tetradentate (η^4-N,N',S,S') Ph₄P₂N₄S₂²⁻ and Ph₄P₂N₄S₂R⁻ Anions. X-ray Structures of {Cp*HfCl₂[Ph₄P₂N₃(NH)S₂]}₂, Cp*ZrCl₂[Ph₄P₂N₄S(SMe)], and [Me₃PNPPh₂NSMeNPPh₂NH₂]Cl

Tristram Chivers,* Xiaoliang Gao, and Masood Parvez

Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada T2N 1N4

Received September 30, 1994[®]

The reaction of Cp*MCl₃ (M = Zr, Hf) with Na₂[Ph₄P₂N₄S₂] in THF produces the complexes Na₁Cp*MCl₂- $(Ph_4P_2N_4S_2)$] (3a, M = Hf; 3b, M = Zr), which were characterized by ²³Na and ³¹P NMR spectroscopy and by the preparation of the protonated derivatives $\{Cp*MCl_2(Ph_4P_2N_3(NH)S_2)\}_2$ (4a, M = Hf; 4b, M = Zr). Complex 4a was shown by X-ray crystallography to be a hydrogen-bonded dimer in which the $P_2N_4S_2$ ring is bonded to the metal in a tetradentate (η^4 -N,N',S,S') fashion and the proton is attached to nitrogen. The Hf-N bond lengths in 4a are 2.227(10) and 2.241(8) Å and the Hf-S distances are 2.859(3) and 2.911(3) Å. Crystals of 4a are monoclinic, space group $P2_1/n$, with a = 11.046(2) Å, b = 18.962(4) Å, c = 17.548(3) Å, $\beta = 99.55(2)^\circ$, V = 17.548(3) Å, $\beta = 11.046(2)$ Å, b = 18.962(4) Å, c = 17.548(3) Å, $\beta = 11.046(2)^\circ$, $V = 10.046(2)^\circ$, V = 10.046(3624(1) Å³, and Z = 4. The final R and R_w values were 0.039 and 0.033, respectively. The methylation of **3a** or **3b** with methyl triflate or methyl iodide generates the S-methylated derivatives Cp*MCl₂[Ph₄P₂N₄S(SMe)] (6a, M = Hf; 6b, M = Zr) via the corresponding N-methylated isomers. Complexes 6a and 6b are more conveniently prepared in >90% yields from Cp*MCl₃ and {Li[Ph₄P₂N₄S(SMe)]}₂. An X-ray structural determination shows that the Ph₄P₂N₄S(SMe)⁻ ligand in **6b** adopts a tetradentate (η^4 -N,N',S,S') bonding mode. Crystals of **6b** are orthorhombic, space group $P2_12_12_1$, with a = 19.255(4) Å, b = 22.839(3) Å, c = 8.296(3) Å, V = 3648(1) Å³, and Z = 4. The final R and R_w values were 0.071 and 0.072, respectively. The reaction of **6b** with an excess of Me₃P, followed by hydrolysis, yields the open-chain compound [Me₃PNPPh₂NSMeNPPh₂- NH_2 [Cl (8) which was characterized by ¹H and ³¹P NMR spectroscopy and by X-ray crystallography. Crystals of 8 are triclinic, space group P1, with a = 10.551(3) Å, b = 16.572(3) Å, c = 9.879(2) Å, $\alpha = 99.90(2)^{\circ}$, $\beta = 10.551(3)$ Å, b = 10.572(3) Å, c = 9.879(2) Å, $\alpha = 99.90(2)^{\circ}$, $\beta = 10.572(3)$ Å, c = 9.879(2) Å, $\alpha = 99.90(2)^{\circ}$, $\beta = 10.572(3)$ Å, c = 9.879(2) Å, $\alpha = 99.90(2)^{\circ}$, $\beta = 10.572(3)$ Å, c = 9.879(2) Å, $\alpha = 99.90(2)^{\circ}$, $\beta = 10.572(3)$ Å, c = 9.879(2) Å, $\alpha = 99.90(2)^{\circ}$, $\beta = 10.572(3)$ Å, $\beta = 10.572(3)$ Å, $\beta = 10.572(3)$ Å, $\alpha = 9.879(2)$ Å, $\alpha = 99.90(2)^{\circ}$, $\beta = 10.572(3)$ Å, $\beta = 10.5$ $105.59(2)^{\circ}$, $\gamma = 104.70(2)^{\circ}$, V = 1555.0(8) Å³, and Z = 2. The final R and R_{w} values were 0.045 and 0.025, respectively.

Introduction

The combination of main group element and group 4 metal chemistry is an area of increasing activity.¹ Such complexes are of interest in providing unusual coordination environments and/or reactivity at the metal center as well as convenient reagents for the functionalization of main group element substrates. We recently discovered that alkali metal derivatives of the dianion $Ph_4P_2N_4S_2^{2-}$ (1) are readily prepared by the

reaction of 1,5-Ph₄P₂N₄S₂ with 2 molar equiv of M[BEt₃H] (M = Li, Na, K).^{2,3} This dianion behaves as a bidentate (η^2 -S,S')^{2,4} or tridentate (η^3 -N,S,S')³ ligand in mononuclear complexes with

late transition metals. It also acts as a bridging tridentate $(\eta^2 - N, S - \mu, \eta^1 - S')^{4,5}$ or tetradentate $(\eta^3 - N, N', S - \mu, \eta^1 - S)^6$ ligand in dinuclear complexes.

The dianion 1 offers interesting possibilities for providing early transition metals with unique surroundings in the coordination sphere. Recently we reported that the related monoanion Ph₄P₂N₄S(SR)⁻ (**2b**), which forms monodentate (η^1 -S) complexes with Pt(II) or Pd(II),⁷ adopts a bidentate (η^2 -N,S) coordination mode in complexes of the type Cp₂MCl[Ph₄P₂N₄S-(SR)] (M = Zr, Hf).⁸ These early transition metal complexes are useful for preparing functionalized derivatives of the P₂N₄S₂ ring by reactions with electrophiles.

We now describe an investigation of the preparation and spectroscopic characterization of group 4 metal complexes of the dianion 1 which, upon protonation, yield complexes of the N-protonated ring system **2a** (R = H) in which the monoanionic ligand adopts the novel tetradentate (η^4 -N,N',S,S') bonding mode. A similar bonding mode is also observed for group 4 metal complexes of the S-methylated ligand **2b** (R = Me), which are obtained from the methylation of the corresponding complexes of 1 or, more directly, by treatment of Cp*MCl₃ (M =

[®] Abstract published in Advance ACS Abstracts, March 1, 1995.

See, for example: (a) Boutonnet, F.; Zablocka, M.; Igau, A.; Majoral, J.-P.; Raynaud, B.; Jaud, J. J. Chem. Soc., Chem. Commun. 1993, 1866. (b) Fryzuk, M. D.; Mylvaganam, M.; Zaworotko, M. J.; MacGillivray, L. R. J. Am. Chem. Soc. 1993, 115, 10360. (c) Le Flach, P.; Ricard, L.; Mathey, F. J. Chem. Soc., Chem. Commun. 1993, 789.
 (d) Igau, A.; Dufour, N.; Mahieu, A.; Majoral, J.-P. Angew. Chem., Int. Ed. Engl. 1993, 32, 95.

⁽²⁾ Chivers, T.; Cowie, M.; Edwards, M.; Hilts, R. W. Inorg. Chem. 1992, 31, 3349.

⁽³⁾ Chivers, T.; Edwards, M.; Gao, X.; Hilts, R. W.; Parvez, M.; Vollmerhaus, R. *Inorg. Chem.*, to be submitted for publication.

⁽⁴⁾ Chivers, T.; Edwards, M.; Meetsma, A.; van de Grampel, J. C.; van der Lee, A. Inorg. Chem. 1992, 31, 2156.

 ⁽⁵⁾ Chivers, T.; Edwards, M.; Kapoor, P. N.; Meetsma, A.; van de Grampel, J. C.; van der Lee, A. Inorg. Chem. 1990, 29, 3068.
 (5) Chiver, T. V. Chiver, C. Chem. 1990, 29, 3068.

Chivers, T.; Hilts, R. W.; Parvez, M.; Ristic-Petrovic, D.; Hoffman, K. J. Organomet. Chem. 1994, 480, C4.

 ^{(7) (}a) Chivers, T.; Edwards, M.; Hilts, R. W.; Meetsma, A.; van de Grampel, J. C. J. Chem. Soc., Dalton Trans. 1992, 3053. (b) Chivers, T.; Edwards, M.; Hilts, R. W.; Parvez, M.; Vollmerhaus, R. Inorg. Chem. 1994, 33, 1440.

^{(8) (}a) Chivers, T.; Hilts, R. W.; Parvez, M. Inorg. Chem. 1994, 33, 997.
(b) Chivers, T.; Hilts, R. W.; Parvez, M.; Vollmerhaus, R. Inorg. Chem. 1994, 33, 3459.

Zr, Hf) with $\{Li[Ph_4P_2N_4S(SMe)]THF\}_2$. The reaction of the complex $\{Cp*ZrCl_2[Ph_4P_2N_4S(SMe)]\}$, obtained in this manner, with trimethylphosphine is also described.

Experimental Section

Reagents and General Procedures. All reactions and the manipulation of air- and moisture-sensitive compounds were carried out under an atmosphere of dry N_2 by using Schlenk techniques or a Vacuum Atmospheres drybox.

The following reagents were prepared by literature procedures: {Li-[Ph₄P₂N₄S(SMe)]THF}₂,⁷ Cp*H,^{9a} Cp*MCl₃ (M = Zr, Hf).^{9b} The commercially available compounds HCl gas (Linde), methyl trifluoromethanesulfonate (Aldrich), Me₃P (Strem), and methyllithium in diethyl ether (Aldrich) were used as received.

Instrumentation. ¹H and ¹³C NMR spectra were obtained on a Bruker ACE 200 MHz spectrometer, and chemical shifts are reported in ppm relative to Me₄Si. ²³Na and ³¹P NMR spectra were determined on a Bruker AM 400 MHz spectrometer with saturated NaCl in D₂O and 85% H₃PO₄, respectively, as the external references.

Preparation of Na[Cp*HfCl₂(Ph₄P₂N₄S₂)] (3a). To a slurry of Na₂-[Ph₄P₂N₄S₂] (0.516 mmol), prepared from 1,5-Ph₄P₂N₄S₂ (0.253 g, 0.516 mmol) and Na[Et₃BH] (1.14 mmol in THF), in THF (15 mL) at -78 °C in a Schlenk vessel equipped with a J-Young valve was added a solution of Cp*HfCl₃ (0.217 g, 0.516 mmol) in THF (15 mL). After 1 h at 23 °C, the reaction mixture was filtered to remove NaCl, and the filtrate was reduced in volume to 10 mL. Colorless crystals of $[Na(THF)_3]$ $[Cp*HfCl_2(Ph_4P_2N_4S_2)]$ deposited at 0 °C overnight. Concentration of the mother liquor to 2 mL produced more crystals. The combined yield was 85%. ¹H NMR (CDCl₃): δ 7.0-8.0 (m, 20H, C₆H₅), 3.67 (m, 12H, C₄H₈O, α-H), 2.19 (s, 15H, CH₃), 1.89 (m, 12H, C₄*H*₈O, β -*H*); ³¹P {¹H} NMR (THF): δ 77.8 (s). The crystals of [Na- $(THF)_3]$ [Cp*HfCl₂(Ph₄P₂N₄S₂)] desolvate readily, and recrystallization from dimethoxyethane also gave the unsolvated product Na[Cp*HfCl2-(Ph₄P₂N₄S₂)] as determined by ¹H NMR. Anal. Calcd for $C_{34}H_{35}Cl_2NaHfN_4P_2S_2$: C, 45.46; H, 3.92; N, 6.23. Found: C, 45.60; H, 4.07; N, 6.62. ²³Na NMR (DME): δ -3.8 (s).

Preparation of Na[Cp*ZrCl₂(Ph₄P₂N₄S₂)] (3b). The zirconium complex was prepared from Cp*ZrCl₃ and Na₂[Ph₄P₂N₄S₂] in a manner similar to that described for the Hf analogue. The yield after recrystallization from CH₂Cl₂/diethyl ether was 92%. Anal. Calcd for C₃₄H₃₅Cl₂NaN₄P₂S₂Zr: C, 50.36; H, 4.35; N, 6.91. Found: C, 50.70; H, 4.66; N, 7.31. ¹H NMR (CD₂Cl₂): δ 7.1–8.1 (m, 20H, C₆H₅), 2.09 (s, 15H, CH₃). ³¹P{¹H} NMR (THF): δ 76.8 (s). ²³Na NMR (THF): δ -3.0 (s).

Reaction of Na[Cp*HfCl₂(Ph₄P₂N₄S₂)] with HCl Gas. To a solution of Na[Cp*HfCl₂(Ph₄P₂N₄S₂)] (0.343 g, 0.382 mmol) in THF (30 mL) at -78 °C was added HCl gas (9.3 mL, 0.382 mmol) from a gastight syringe. The solution was allowed to reach 23 °C in 1 h with vigorous stirring. The precipitate of NaCl was removed by filtration, and solvent was removed from the filtrate under vacuum. Recrystallization of the product from DME/diethyl ether gave {Cp*HfCl₂-[Ph₄P₂N₃(NH)S₂]₂, **4a** (0.271 g, 0.309 mmol, 90% yield). Anal. Calcd for C₃₄H₃₆Cl₂HfN₄P₂S₂: C, 46.61; H, 4.14; N, 6.39. Found: C, 46.92; H, 4.31; N, 6.58. ¹H NMR (CD₂Cl₂): δ 12.03 (s, br, 1H, NH), 7.0–8.2 (m, 20H, C₆H₅), 2.17 (s, 15H, CH₃), ³¹P{¹H} NMR (THF): δ 66.4 (s).

Reaction of Na[Cp*ZrCl₂(Ph₄P₂N₄S₂)] with HCl Gas. This reaction was carried out at -100 °C in a manner similar to that described for the Hf analogue to give {Cp*ZrCl₂(Ph₄P₂N₄S₂H) (THF)}₂, **4b**·2THF, in 87% yield after recrystallization from THF. Anal. Calcd for C₃₈H₄₄Cl₂ON₄P₂S₂Zr: C, 53.01; H, 5.15; N, 6.51. Found: C, 52.43; H, 5.03; N, 6.65. ¹H NMR (CD₂Cl₂): δ 11.8 (s, br, 1H, NH), 7.0–8.0 (m, 20H, C₆H₅), 3.70 (m, 4H, C₄H₈O, α -H), 2.09 (s, 15H, CH₃), 1.83 (m, 4H, C₄H₈O, β -H). ³¹P{¹H} NMR (THF): δ 76.3 (s).

Preparation of {Cp*HfCl₂[Ph₄P₂N₄S(SMe)]} (6a). (a) From Na-[Cp*HfCl₂(Ph₄P₂N₄S₂)] and CH₃SO₃CF₃ or CH₃I. Neat CH₃SO₃-CF₃ (47.3 μ L, 0.418 mmol) was added to a stirred solution of Na[Cp*HfCl₂(Ph₄P₂N₄S₂)] (0.375 g, 0.418 mmol) in THF (30 mL) at -78 °C. The reaction mixture was allowed to reach 23 °C to give a pale yellow solution after 2 h. Solvent was removed under vacuum, the residue was dissolved in toluene, and the resulting solution was filtered. Removal of solvent from the filtrate under vacuum gave a colorless residue which was recrystallized from DME/diethyl ether to give colorless crystals of {Cp*HfCl₂[Ph₄P₂N₄S(SMe)]} (**6a**) (0.249 g, 0.280 mmol, 67% yield). Anal. Calcd for C₃₅H₃₈Cl₂HfN₄P₂S₂: C, 47.22; H, 4.30; N, 6.29. Found: C, 46.82; H, 4.33; N, 6.36. ¹H NMR (CDCl₃): 7.2–8.0 (m, 20H, C₆H₅), 3.28 (s, 3H, SCH₃), 2.17 (s, 15H, Cp*-CH₃). ³¹P NMR (THF): δ 68.4 (s).

A large excess of methyl iodide (0.1 mL) was added to a solution of Na[Cp*HfCl₂(Ph₄P₂N₄S₂)] (0.359 g, 0.400 mmol) in DME (30 mL). After 10 h the ³¹P NMR spectrum of the reaction mixture exhibited resonances (δ , ppm) at 82.2 (d, J = 22.9 Hz), 77.5 (s), 74.5 (d, J =22.9 Hz), and 68.4 (s). After 2 days the ³¹P NMR spectrum showed only the singlet at 68.4 ppm attributable to **6a**.

(b) From Cp*HfCl₃ and {Li[Ph₄P₂N₄S(SMe)THF]}₂. The lithium reagent {Li[Ph₄P₂N₄S(SMe)]THF}₂ was prepared by the addition of a solution of methyllithium in diethyl ether (0.618 mmol) to an equimolar amount of 1,5-Ph₄P₂N₄S₂ in THF (30 mL) at -78 °C followed by warming to 23 °C with stirring for 2 h.⁷ This reagent was then cooled to -78 °C, and a solution of Cp*HfCl₃ (0.260 g, 0.618 mmol) in THF (30 mL) at -30 °C was added to it. The reaction mixture was allowed to reach 23 °C and was stirred for 2 h. After removal of the solvent under vacuum, the residue was dissolved in toluene, and the solution was filtered to remove LiCl. Removal of the solvent under vacuum gave a colorless residue which was recrystallized from DME/diethyl ether to give {Cp*HfCl₂[Ph₄P₂N₄S(SMe)]} (**6a**) (0.500 g, 0.562 mmol, 91% yield) identified by comparison of spectroscopic data with those of an authentic sample prepared from Na[Cp*HfCl₂(Ph₄P₂N₄S₂)] and methyl triflate.

Preparation of {Cp*ZrCl₂[Ph₄P₂N₄S(SMe)]} (6b). The Zr complex **6b** was obtained in 90% yield, after recrystallization from DME/ diethyl ether, from the reaction of {Li[Ph₄P₂N₄S(SMe)]THF}₂ with Cp*ZrCl₃ in a manner similar to that described for the hafnium analogue. Anal. Calcd for $C_{35}H_{38}Cl_2N_4P_2S_2Zr$: C, 52.35; H, 4.77; N, 6.98. Found: C, 51.92; H, 4.82; N, 6.97. ¹H NMR (CD₂Cl₂): δ 7.2–7.9 (m, 20H, C₆H₅), 3.18 (s, 3H, SCH₃), 2.07 (s, 15H, Cp*-CH₃). ³¹P NMR (THF): 68.0(s).

Preparation of [Me₃PNPPh₂NSMeNPPh₂NH₂]Cl. An excess of Me₃P (0.3 mL) was added to a slurry of {Cp*ZrCl₂[Ph₄P₂N₄S(SMe)]} (0.613 g, 0.764 mmol) in toluene (20 mL). The solid dissolved in *ca.* 15 min to give a colorless solution which was stirred for an additional 1.5 h. The ³¹P NMR spectrum of the reaction mixture showed four singlets at 27.8, 23.1, 9.6, and -4.4 ppm, in addition to the resonance at -62.0 ppm for unreacted Me₃P. Hexanes were then added to the toluene solution until it was slightly turbid, and the mixture was kept at -20 °C for 24 h. A white precipitate deposited and was recrystallized from THF to give colorless crystals of [Me₃PNPPh₂NSMeNPPh₂NH₂]Cl (0.130 g, 0.221 mmol, 29% yield). Anal. Calcd for C₂₈H₃₄ClN₄P₃S: C, 57.28; H, 5.84; N, 9.54. Found: C, 56.93; H, 5.62; N, 9.54. ¹H NMR (CD₂Cl₂): δ 7.2-7.9 (m, 20H, C₆H₅), 5.16 (s, br, 2H, NH), 2.89 (d, 3H, SCH₃, ⁴J(¹H-³¹P) = 0.84 Hz), 1.53 (d, 9H, PCH₃, ²J(¹H-³¹P) = 13.1 Hz). ³¹P NMR (CD₂Cl₂): δ 25.7 (s), 23.7 (s), 13.3 (s).

X-ray Structure Determinations. Crystallographic data for 4a, 6b, and 8 are summarized in Table 1. All measurements were made on a Rigaku AFC6S diffractometer with graphite-monochromated Mo K α radiation. A colorless needle of 4a (0.45 × 0.20 × 0.10 mm) obtained by recrystallization from DME/ether was mounted in a glass capillary. Accurate cell dimensions and a crystal orientation matrix were determined by a least-squares fit of the setting angles of 19 reflections in the range 36.53 < 2 θ < 39.88°. Intensity data were collected by the $\omega/2\theta$ method using a scan speed of 4.0°/min and scan width of (1.15 + 0.34 tan θ)° to a maximum 2θ value of 50.1°. The intensities of 6634 reflections were measured, of which 3229 had $I > 3\sigma(I)$. The structure was solved and expanded by using Fourier techniques.¹⁰ The

^{(9) (}a) Threlkel, R. S.; Bercaw, J. E.; Seidler, P. F.; Stryker, J. M.; Bergman, R. G. Org. Synth. 1987, 65, 42. (b) Blenkers, J.; Hessen, B.; Bolhuis, F. V.; Wagner, A. J.; Teuben, J. H. Organometallics 1987, 6, 459.

⁽¹⁰⁾ DIRDIF92: Beurskens, P. T.; Admiraal, G.; Beurskens, G.; Bosman, W. P.; Garcia-Granda, S.; Gould, R. O.; Smits, J. M. M.; Smykalla, C. Technical report; Crystallography Laboratory, University of Nijmegen: Nijmegen, The Netherlands, 1992.

Table 1. Crystallographic Data for $\{Cp*HfCl_2[Ph_4P_2N_3(NH)S_2]\}_2$ (4a), $\{Cp*ZrCl_2[Ph_4P_2N_4S(SMe)]\}$ (6b), and $[Me_3PNPPh_2NSMeNPPh_2NH_2]Cl$ (8)

	4a	6b	8
formula	C34H36N4P2S2Cl2Hf	C35H38N4Cl2P2S2Zr	C ₂₈ H ₃₄ N ₄ P ₃ SCl
fw	876.15	802.91	587.04
crystal system	monoclinic	orthorhombic	triclinic
space group	<i>P</i> 2 ₁ / <i>n</i> (No. 14)	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)	P1 (No. 2)
a. Å	11.046(2)	19.255(4)	10.551(3)
b. Å	18.962(4)	22.839(3)	16,572(3)
c, Å	17.548(3)	8.296(3)	9.879(2)
a, deg	. ,		99.90(2)
β , deg	99.55(2)		105.59(2)
γ , deg			104.70(2)
Z	4	4	2
V, Å3	3624(1)	3648(1)	1555.0(8)
Q _{calcd} , g cm ⁻³	1.605	1.462	1.254
<i>F</i> (000)	1744	1648	616
μ , mm ⁻¹	3.254	0.681	0.368
radiation	Μο Κα	Μο Κα	Μο Κα
(λ, Å)	(0.710 69)	(0.710 69)	(0.710 69)
T, °C	23.0	23.0	23.0
Ra	0.039	0.071	0.045
R_{w}^{b}	0.033	0.072	0.025

$${}^{a}R = \sum (||F_{o} - F_{c}||) / \sum |F_{o}|. {}^{b}R_{w} = [\sum w(|F_{o}| - |F_{c}|)^{2} / \sum w|F_{o}|^{2}]^{1/2}.$$

non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined. Refinement converged with R = 0.039 and $R_w = 0.033$.

A colorless needle of **6b** (0.60 × 0.20 × 0.12 mm) obtained by layering diethyl ether onto a THF solution at 23 °C was mounted in a glass capillary. Conditions: 16 reflections in the range 20.56 < 2 θ < 31.76°; scan speed 4.0°/min, scan width (1.00 + 0.34 tan θ)° to a maximum 2 θ value of 60.1°; 5985 reflections of which 1583 had I > $3\sigma(I)$. The structure was solved and expanded by using Fourier techniques.¹⁰ The non-hydrogen atoms except phenyl carbon atoms were refined anisotropically; the latter were allowed to refine as regular hexagons with overall isotropic temperature factors. Hydrogen atoms were included at geometrically idealized positions. Refinement converged at R = 0.071 and $R_w = 0.072$.

A colorless prism of **8** ($0.32 \times 0.20 \times 0.10$ mm) obtained by recrystallization from THF was mounted in a glass capillary. Conditions: 25 reflections in the range $20.0 \le 2\theta \le 30.0^\circ$; scan speed 4.0° / min, scan width ($0.94 + 0.34 \tan \theta$)° to a maximum 2θ value of 50.1° ; 5520 reflections of which 1140 had $I \ge 3\sigma(I)$. The structure was solved by direct methods¹¹ and expanded using Fourier techniques.¹⁰ The nonhydrogen atoms were refined anisotropically. Hydrogen atoms were included at geometrically idealized positions but were not allowed to refine. Refinement converged at R = 0.045 and $R_w = 0.025$.

For all three structures the data were corrected for Lorentz and polarization effects, and an empirical absorption correction using the program DIFABS¹² was applied. Scattering factors were those of Cromer and Waber,¹³ and allowance was made for anomalous dispersion.¹⁴

All calculations for **4a**, **6b**, and **8** were performed using the TEXSAN¹⁵ crystallographic software package. The positional parameters for **4a**, **6b**, and **8** are given in Tables 2-4, respectively.

- (11) SAPI91: Fan, Hai-Fu. Structure Analysis Programs with Intelligent Control; Rigaku Corp: Tokyo, Japan, 1991.
- (12) DIFABS: Walker, N.; Stuart, D. Acta Crystallogr. 1983, A39, 158. An empirical absorption correction program.
- (13) Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystallography; Kynoch Press: Birmingham, U.K., 1974; Vol. IV, Table 2.2A, pp 71-98.
- (14) Creagh, D. C.; McAuley, W. J. International Tables for Crystallography; Wilson, A, J. C., Ed.; Kluwer Academic Publishers: Boston, MA, 1992; Vol. C, Table 4.2.6.8, pp 219-222.
- (15) teXsan: Crystal Structure Analysis Package, Molecular Structure Corp., 1985 and 1992.

Table 2. Final Fractional Coordinates and Equivalent Isotropic Temperatujre Factors (B_{eq}) with Esd's in Parentheses for $\{Cp^*HfCl_2[Ph_4P_2N_3(NH)S_2]\}$

atom	x	у	z	$B_{eq},^{a}$ Å ²
Hf(1)	0.11310(5)	0.23330(3)	-0.08100(3)	2.72(1)
Cl(1)	0.2369(3)	0.2324(2)	0.0488(2)	4.05(8)
Cl(2)	0.2720(3)	0.1667(2)	-0.1321(2)	3.91(10)
S (1)	-0.1438(3)	0.2033(2)	-0.1146(2)	3.12(8)
S(2)	0.1079(3)	0.0891(2)	-0.0247(2)	2.94(8)
P (1)	-0.0252(3)	0.0879(2)	-0.1752(2)	2.99(9)
P(2)	-0.0733(3)	0.1678(2)	0.0428(2)	2.59(8)
N(1)	-0.0285(9)	0.1739(5)	-0.1612(5)	3.0(3)
N(2)	-0.0546(8)	0.2231(5)	-0.0254(4)	2.5(2)
N(3)	0.022(8)	0.0936(5)	0.0367(5)	2.8(3)
N(4)	0.0395(9)	0.0428(5)	-0.1007(5)	3.0(3)
C(1)	0.02481(15)	0.3566(6)	-0.1032(9)	4.1(4)
C(2)	0.1476(16)	0.3640(7)	-0.0633(9)	5.4(5)
C(3)	0.2298(14)	0.3422(8)	-0.1099(8)	4.6(4)
C(4)	0.1636(12)	0.3214(7)	-0.1803(8)	3.5(4)
C(5)	0.0385(15)	0.3299(6)	-0.1780(7)	3.9(4)
C(6)	-0.0951(15)	0.3784(7)	-0.0774(8)	5.7(5)
C(7)	0.1733(17)	0.3959(7)	0.0156(9)	7.3(6)
C(8)	0.3658(14)	0.3450(8)	-0.0862(8)	6.2(5)
C(9)	0.2121(12)	0.3044(7)	-0.2518(7)	4.6(4)
C(10)	-0.0664(13)	0.3199(6)	-0.2462(8)	4.8(4)
C(11)	0.0573(12)	0.0753(7)	-0.2559(7)	3.4(4)
C(12)	0.0390(13)	0.1220(6)	-0.3181(8)	4.4(4)
C(13)	0.1017(17)	0.1117(10)	-0.3776(9)	7.0(6)
C(14)	0.1825(17)	0.0596(10)	-0.3781(10)	7.1(6)
C(15)	0.2006(15)	0.0126(8)	-0.3179(10)	6.0(5)
C(16)	0.1403(13)	0.0210(8)	-0.2570(8)	5.0(4)
C(17)	-0.1773(12)	0.0552(6)	-0.2023(7)	3.0(3)
C(18)	-0.2442(14)	0.0567(7)	-0.2763(8)	5.1(4)
C(19)	-0.3656(15)	0.0337(8)	-0.2900(9)	5.7(5)
C(20)	-0.4249(15)	0.0101(8)	-0.2316(10)	6.1(5)
C(21)	-0.3624(15)	0.0092(9)	-0.1587(10)	6.5(5)
C(22)	-0.2393(13)	0.0292(7)	-0.1448(8)	4.8(4)
C(23)	-0.2353(10)	0.1481(6)	0.0410(6)	2.5(3)
C(24)	-0.3235(12)	0.1990(6)	0.0217(8)	4.0(4)
C(25)	-0.4436(12)	0.1839(8)	0.0199(9)	5.5(5)
C(26)	-0.4776(11)	0.1181(8)	0.0385(8)	4.2(4)
C(27)	-0.3923(12)	0.0649(7)	0.0577(8)	4.3(4)
C(28)	-0.2/30(12)	0.0794(6)	0.0581(7)	3.5(4)
C(29)	-0.0216(11)	0.2084(7)	0.1338(7)	2.7(3)
C(30)	0.0515(12)	0.1754(8)	0.1940(9)	5.1(4)
C(31)	0.0826(13)	0.2103(9)	0.2661(8)	5.9(5) 7.5(6)
C(32)	0.0389(15)	0.2768(11)	0.2/51(10)	/.5(6)
C(33)	-0.0337(15)	0.3101(7)	0.2179(10)	5.4(5)
C(34)	-0.0639(12)	0.2781(9)	0.1467(7)	5.1(4)

 ${}^{a}B_{eq} = {}^{8}{}_{/3}\pi^{2}(U_{11}(aa^{*})^{2} + U_{22}(bb^{*})^{2} + U_{33}(cc^{*})^{2} + 2U_{12}aa^{*}bb^{*}\cos \gamma + 2U_{13}aa^{*}cc^{*}\cos \beta + 2U_{23}bb^{*}cc^{*}\cos \alpha).$

Results and Discussion

Preparation and Protonation of Na[Cp*MCl₂(Ph₄P₂N₄S₂)] (3a, M = Hf; 3b, M = Zr). The reaction of Na₂[Ph₄P₂N₄S₂] with Cp*MCl₃ (M = Zr, Hf) in THF results in the replacement of one chloride by the Ph₄P₂N₄S₂²⁻ ligand to give complexes of the type [Na(THF)₃][Cp*MCl₂(Ph₄P₂N₄S₂)] in 85–90% yields as colorless crystals which readily desolvate to give opaque white powders.

$$Na_{2}[Ph_{4}P_{2}N_{4}S_{2}] + Cp*MCl_{3} \rightarrow Na[Cp*MCl_{2}(Ph_{4}P_{2}N_{4}S_{2})] + NaCl (1)$$

$$3a, M = Hf$$

$$3b, M = Zr$$

The ³¹P NMR spectra of **3a** and **3b** exhibit singlets at 77– 78 ppm, indicating that the $P_2N_4S_2$ ligand is bonded symmetrically to both the group 4 metal and the sodium atom (see Scheme 1). However, the facile loss of solvent from crystals of **3a** and **3b** has prevented an X-ray structural determination. Consequently, these sodium salts were converted to the proto-

Table 3. Final Fractional Coordinates and Equivalent Isotropic Temperatujre Factors (B_{eq}) with Esd's in Parentheses for $\{Cp*ZrCl_2[Ph_4P_2N_4S(SMe)]\}$

atom	x	у	Z	$B_{\rm eq}/B_{\rm iso}$, ^a Å ²
Zr(1)	0.0490(1)	0.1164(1)	0.022(2)	2.55(8)
Cl(1)	0.0086(3)	0.1847(2)	0.2324(8)	4.8(3)
Cl(2)	0.0658(3)	0.0409(3)	0.2345(7)	4.0(3)
S (1)	-0.0155(3)	0.0980(2)	-0.2773(6)	3.0(3)
S(2)	-0.0913(3)	0.0778(2)	0.1031(6)	2.9(3)
P(1)	-0.1134(3)	0.1681(2)	-0.0987(7)	3.0(3)
P(2)	-0.0451(3)	-0.0054(2)	-0.0998(6)	3.0(2)
N(1)	-0.0293(9)	0.1544(6)	-0.1538(18)	2.9(8)
N(2)	0.0129(9)	0.0429(7)	-0.1428(21)	3.3(8)
N(3)	-0.1046(8)	0.0130(7)	0.0173(18)	3.2(8)
N(4)	-0.1471(7)	0.1262(8)	0.0468(19)	3.1(9)
$\mathbf{C}(1)$	-0.1182(8)	0.2414(5)	-0.0352(18)	4.5
C(2)	-0.0724(6)	0.2833(6)	-0.0951(15)	4.5
$\tilde{C}(3)$	-0.0785(6)	0.3416(6)	-0.0469(16)	4.5
C(4)	-0.1305(7)	0.3579(5)	0.0613(16)	4.5
C(5)	-0.1764(6)	0.3159(7)	0.1212(14)	4.5
C(6)	-0.1702(7)	0.2577(6)	0.0730(17)	4.5
C(7)	-0.1704(6)	0.1638(7)	-0.2736(14)	4.4
C(8)	-0.1758(7)	0.2113(5)	-0.3785(18)	4.4
C(9)	-0.2197(7)	0.2082(5)	-0.5119(15)	4.4
C(10)	-0.2582(6)	0.1575(6)	-0.5404(13)	4.4
C(11)	-0.2528(7)	0 1099(5)	-0.4355(17)	44
C(12)	-0.2089(7)	0.1131(6)	-0.3021(15)	44
C(13)	-0.0859(8)	-0.0290(6)	-0.2842(13)	4.4
C(14)	-0.1563(7)	-0.0434(6)	-0.2913(13)	4.4
C(15)	-0.1836(5)	-0.0690(6)	-0.4302(17)	4.4
C(16)	-0.1406(7)	-0.0801(6)	-0.5620(13)	4.4
C(17)	-0.0703(7)	-0.0657(6)	-0.5549(13)	4.4
C(18)	-0.0429(5)	-0.0401(6)	-0.4160(17)	4.4
C(19)	-0.0022(7)	-0.0691(5)	-0.0364(14)	4.3
C(20)	0.0690(6)	-0.0772(5)	-0.0579(15)	4.3
$\tilde{C}(21)$	0.1000(5)	-0.1298(6)	-0.018(15)	4.3
C(22)	0.0598(7)	-0.1743(5)	0.0558(14)	4.3
C(23)	-0.0114(6)	-0.1662(5)	0.0773(14)	4.3
C(24)	-0.0424(5)	-0.1136(6)	0.0312(15)	4.3
C(25)	-0.1163(13)	0.0731(12)	0.301(2)	5(1)
C(26)	0.1298(12)	0.1717(9)	-0.176(3)	4(1)
C(27)	0.1406(10)	0.1945(9)	0.004(4)	6(1)
C(28)	0.1721(11)	0.1520(11)	0.081(2)	3(1)
C(29)	0.1745(9)	0.0973(10)	-0.013(3)	5(1)
C(30)	0.1515(11)	0.1151(12)	-0.175(2)	4(1)
C(31)	0.1085(13)	0.2035(13)	-0.326(4)	7(2)
C(32)	0.1322(12)	0.2574(11)	0.035(3)	6(1)
C(33)	0.1939(12)	0.1516(16)	0.257(3)	8(2)
C(34)	0.2127(12)	0.0411(13)	0.011(4)	7(2)
C(35)	0.1581(14)	0.0710(12)	-0.310(3)	6(2)

^a $B_{eq} = \frac{8}{3}\pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}aa^*bb^*\cos\gamma + 2U_{13}aa^*cc^*\cos\beta + 2U_{23}bb^*cc^*\cos\alpha).$

nated derivatives {Cp*MCl₂[Ph₄P₂N₃(NH)S₂]}₂ (**4a**, M = Hf; **4b**, M = Zr) by treatment of a THF solution at -78 °C with 1 molar equiv of HCl. The ¹H NMR spectra of **4a** and **4b** exhibit broad singlets at δ 12.0 and 11.8, respectively, which can be attributed to an NH group. Surprisingly, however, the ³¹P NMR spectra of **4a** and **4b** each consist of a singlet at 66.4 and 76.3 ppm, respectively. In order (a) to determine the mode of coordination of the P₂N₄S₂ ligand to the early transition metal in these complexes and (b) to confirm the site of protonation, an X-ray structural determination of **4a** was carried out.

X-ray Structure of {Cp*HfCl₂[Ph₄P₂N₃(NH)S₂]}₂. An ORTEP drawing of 4a with the atomic numbering scheme is shown in Figure 1. Selected bond distances and bond angles are given in Table 5. The X-ray structural determination reveals that the heterocyclic ligand in 4a is connected to hafnium in a tetradentate (η^4 -N,N',S,S') fashion to give a formally nine-coordinate metal atom and confirms that the proton is attached to a nitrogen atom. Thus the ligand is formally Ph₄P₂N₃(NH)S₂⁻ (2a, R = H), the N-protonated derivative of 1. Complex 4a exists as a hydrogen-bonded dimer with d(N-H-N) = 2.89-

Table 4. Final Fractional Coordinates and Equivalent Isotropic Temperatujre Factors (B_{eq}) with Esd's in Parentheses for $[Me_3PNPPh_2NSMeNPPh_2NH_2]Cl$

atom	x	у	z	$B_{\rm eq}$," Å ²
Cl(1)	0.9580(3)	0.1243(2)	0.3582(4)	5.0(1)
S(1)	0.4657(4)	0.2352(2)	0.6007(4)	4.0(1)
P (1)	0.3029(4)	0.1346(2)	0.7270(4)	3.8(1)
P(2)	0.6997(4)	0.3779(3)	0.7581(4)	4.2(1)
P(3)	0.8559(4)	0.2717(3)	0.6627(4)	5.0(1)
N(1)	0.1876(9)	0.0611(6)	0.5824(9)	4.1(3)
N(2)	0.3580(9)	0.2247(6)	0.6908(10)	4.0(3)
N(3)	0.5464(9)	0.3361(6)	0.6372(10)	3.9(3)
N(4)	0.8043(10)	0.3237(6)	0.7726(10)	4.5(3)
C(1)	0.2365(14)	0.1621(10)	0.8719(13)	3.4(4)
C(2)	0.2807(14)	0.2452(10)	0.9614(18)	5.6(5)
C(3)	0.2221(18)	0.2613(9)	1.0705(15)	5.6(5)
C(4)	0.1208(17)	0.1985(12)	1.0888(16)	6.0(6)
C(5)	0.0774(14)	0.1164(9)	0.9970(17)	4.7(5)
C(6)	0.1302(16)	0.0990(9)	0.8887(15)	4.8(5)
C(7)	0.4319(13)	0.0848(10)	0.7902(20)	4.1(5)
C(8)	0.5224(20)	0.1138(9)	0.9300(21)	6.2(6)
C(9)	0.6312(25)	0.0822(15)	0.9787(28)	9.0(9)
C(10)	0.6499(27)	0.0224(17)	0.8847(34)	10(1)
C(11)	0.5600(24)	-0.0100(13)	0.7444(26)	9.2(9)
C(12)	0.4520(17)	0.0215(12)	0.6948(18)	6.9(6)
C(13)	0.6857(14)	0.4038(11)	0.9363(14)	4.9(5)
C(14)	0.6757(17)	0.4820(13)	0.9942(19)	7.6(7)
C(15)	0.6524(20)	0.5002(13)	1.1276(24)	9.6(8)
C(16)	0.6429(24)	0.4346(17)	1.1997(22)	11.1(8)
C(17)	0.6528(22)	0.3571(14)	1.1462(23)	9.7(7)
C(18)	0.6802(15)	0.3418(10)	1.0152(20)	7.4(6)
C(19)	0.7705(15)	0.4775(8)	0.7155(15)	3.8(4)
C(20)	0.9056(16)	0.5280(11)	0.7916(18)	7.5(6)
C(21)	0.9573(18)	0.6011(13)	0.7503(24)	9.8(9)
C(22)	0.8824(21)	0.6288(11)	0.6431(23)	7.6(7)
C(23)	0.7510(19)	0.5792(10)	0.5711(15)	6.4(6)
C(24)	0.6941(13)	0.5050(9)	0.6061(15)	4.7(4)
C(25)	0.8283(14)	0.1637(9)	0.6781(14)	8.0(6)
C(26)	0.7803(13)	0.2661(9)	0.4762(13)	7.4(5)
C(27)	1.0363(13)	0.3154(9)	0.7015(14)	8.2(5)
C(28)	0.3536(12)	0.2206(8)	0.4251(12)	5.5(4)

^{*a*} $B_{eq} = \frac{8}{3}\pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}aa^*bb^*\cos\gamma + 2U_{13}aa^*cc^*\cos\beta + 2U_{23}bb^*cc^*\cos\alpha).$

(1) Å in the solid state (see Figure 2). The observation of a singlet in the ³¹P NMR spectrum of **4a** within the temperature range -90 to +25 °C is only consistent with the retention of a dimeric structure in solution if the NH protons connecting two P₂N₄S₂ rings exchange rapidly between equivalent positions. Alternatively, a monomeric structure in solution in which the proton undergoes a rapid 1,3-nitrogen shift (across a sulfur atom) could account for the singlet in the ³¹P NMR spectrum.

The Hf-N bond lengths in **4a** are 2.227(10) and 2.241(8) Å; *cf.* d(Hf-N) = 2.202(4) and 2.18(1) Å for η^2 -aminoacyl and vinylamido derivatives of hafnocene, respectively.¹⁶ The two sulfur atoms are less strongly bound to hafnium with d(Hf-S) = 2.859(3) and 2.911(3) Å, but we have been unable to locate literature data on comparable Hf-S bond distances. However, on the basis of a difference of *ca*. 0.30 Å between the covalent radii of nitrogen and sulfur,¹⁷ it appears that the sulfur atoms are more weakly attached to hafnium in **4a** than the nitrogen atoms. The tetradentate coordination of the P₂N₄S₂ ring to hafnium has a significant effect on S-N bond lengths, which range from 1.668(9) Å for S(2)-N(4) to 1.747(8) Å for S(1)-N(2). This can be compared with an S-N distance of 1.697-(6) Å for the coordinated ligand atoms in ZrCp₂Cl(η^2 -N,S-Ph₄P₂N₄S₂tBu)⁸ and values of 1.72(1) and 1.755(9) Å for

⁽¹⁶⁾ Beshouri, S. M.; Chebi, D. E.; Fanwick, P. E.; Rothwell, I. P.; Huffman, J. C. Organometallics 1990, 9, 2375.

⁽¹⁷⁾ Purcell, K. F.; Kotz, J. C. Inorganic Chemistry; W. B. Saunders Co.: Philadelphia, PA, 1977.

^{*a*} (i) HCl, (ii) MeI or MeSO₃CF₃, (iii) 23 °C. For simplicity compound **4** is represented as a monomer in this scheme.

Figure 1. ORTEP diagram for $\{Cp*HfCl_2[Ph_4P_2N_3(NH)S_2]\}_2$ showing the atomic numbering scheme. Only half of this hydrogen-bonded dimer is shown.

[Li(Ph₄P₂N₄S₂Ph)THF]₂, in which each lithium atom is coordinated to two nitrogen atoms of one P₂N₄S₂ ring and acts as a bridge to one of the nitrogen atoms of another P₂N₄S₂ ring.¹⁸ The P–N bond distances in **4a** fall within the range 1.627(9)–1.651(9) Å.

Methylation of Na[Cp*MCl₂(Ph₄P₂N₄S₂)] (M = Hf, Zr). The methylation of the sodium derivatives 3a and 3b was also investigated to determine whether an electrophilic methyl group

Figure 2. Unit cell diagram for $\{Cp^*HfCl_2[Ph_4P_2N_3(NH)S_2]\}_2$ showing the hydrogen-bonding interactions.

Table 5. Selected Bond Distances (Å) and Bond Angles (deg) for $\{Cp^*HfCl_2[Ph_4P_2N_3(NH)S_2]\}_2$

Bond Distances					
Hf(1)-Cl(1)	2.454(3)	Hf(1)-Cl(2)	2.450(3)		
Hf(1) - S(1)	2.859(3)	Hf(1) - S(2)	2.911(3)		
Hf(1) - N(1)	2.227(10)	Hf(1)-N(2)	2.241(8)		
Hf(1) - C(1)	2.54(1)	Hf(1)-C(2)	2.52(1)		
Hf(1)-C(3)	2.53(1)	Hf(1)-C(4)	2.54(1)		
Hf(1)-C(5)	2.54(1)	S(1) - N(1)	1.717(9)		
S(1) - N(2)	1.747(8)	S(2) - N(3)	1.717(8)		
S(2) - N(4)	1.668(9)	P(1) - N(1)	1.651(9)		
P(1) - N(4)	1.627(9)	P(1) - C(11)	1.82(1)		
P(1) - C(17)	1.78(1)	P(2) - N(2)	1.630(8)		
P(2) - N(3)	1.647(9)	P(2) - C(23)	1.82(1)		
P(2) - C(29)	1.78(1)				
	Bond Ar	ngles			
Cl(1) - Hf(1) - Cl(2)	90.7(1)	Hf(1)-S(1)-N(2)	51.6(3)		
Cl(1) - Hf(1) - S(2)	73.6(1)	Hf(1) - S(1) - N(1)	51.1(3)		
Cl(1) - Hf(1) - N(2)	88.2(2)	Hf(1)-S(2)-N(3)	102.7(3)		
Cl(1) - Hf(1) - S(1)	124.84(9)	Hf(1)-S(2)-N(4)	104.8(3)		
Cl(1) - Hf(1) - N(1)	143.8(2)	Hf(1) - N(1) - P(1)	124.3(5)		
Cl(2) - Hf(1) - S(1)	124.7(1)	Hf(1) - N(1) - S(1)	92.0(4)		
Cl(2) - Hf(1) - N(1)	88.8(2)	Hf(1) - N(2) - S(1)	90.7(3)		
Cl(2) - Hf(1) - S(2)	72.28(10)	Hf(1) - N(2) - P(2)	126.1(5)		
C1(2) - HF(1) - N(2)	144.0(2)	S(1) - N(1) - P(1)	115.3(5)		
S(1) - Hf(1) - N(1)	36.9(2)	S(1) - N(2) - P(2)	113.4(5)		
S(1) - Hf(1) - S(2)	78.92(9)	S(2) - N(3) - P(2)	119.2(5)		
S(1) - Hf(1) - N(2)	37.7(2)	S(2) - N(4) - P(1)	116.5(5)		
S(2) - Hf(1) - N(1)	71.8(2)	N(1) - S(1) - N(2)	98.2(5)		
S(2) - Hf(1) - N(2)	73.0(2)	N(3) - S(2) - N(4)	105.3(5)		
N(1) - Hf(1) - N(2)	71.8(3)	N(1) - P(1) - N(4)	114.7(5)		
		N(2) - P(2) - N(3)	112.0(4)		

would become attached to a nitrogen or a sulfur atom of the $P_2N_4S_2$ ligand. The treatment of a THF solution of **3a** at -78 °C with an equimolar amount of methyl triflate, followed by warming to 23 °C, produced colorless crystals of {Cp*HfCl₂-[Ph₄P₂N₄S(SMe)]}, **6a**, in 67% yield. The same complex is more efficiently prepared (91% yield) by the reaction of Cp*HfCl₃ with {Li[Ph₄P₂N₄S(SMe)]THF}₂ in THF, and the

⁽¹⁸⁾ Chivers, T.; Edwards, M.; Hilts, R. W.; Parvez, M.; Vollmerhaus, R. J. Chem. Soc., Chem. Commun. 1993, 1483.

Figure 3. ORTEP diagram for Cp*ZrCl₂[Ph₄P₂N₄S(SMe)] showing the atomic numbering scheme.

Table 6. Selected Bond Distances (Å) and Bond Angles (deg) for {Cp*ZrCl₂[Ph₄P₂N₄S(SMe)]}

Bond Distances					
Zr(1)-Cl(1)	2.465(7)	Zr(1)-Cl(2)	2.487(6)		
Zr(1) - S(1)	2.810(6)	Zr(1) - S(2)	2.919(6)		
Zr(1) - N(1)	2.27(2)	Zr(1) - N(2)	2.27(2)		
Zr(1) - C(26)	2.59(2)	Zr(1) - C(27)	2.51(2)		
Zr(1) - C(28)	2.55(2)	Zr(1) - C(29)	2.47(2)		
Zr(1) - C(30)	2.57(2)	S(1) - N(1)	1.67(2)		
S(1) - N(2)	1.77(2)	S(2) - N(3)	1.66(2)		
S(2) - N(4)	1.61(2)	S(2) - C(25)	1.71(2)		
P(1) - N(1)	1.71(2)	P(1) - N(4)	1.67(2)		
P(1) - C(1)	1.76(1)	P(1) - C(7)	1.82(1)		
P(2) - N(2)	1.61(2)	P(2) - N(3)	1.56(2)		
P(2) - C(13)	1.80(1)	P(2) - C(19)	1.75(1)		
	Bond A	Angles			
Cl(1) - Zr(1) - Cl(2)	88.8(2)	Cl(1) - Zr(1) - S(1)	125.5(2)		
Cl(1) - Zr(1) - S(2)	74.7(2)	Cl(1) - Zr(1) - N(1)	90.3(4)		
Cl(1) - Zr(1) - N(2)	142.8(5)	Cl(2) - Zr(1) - S(2)	75.4(2)		
Cl(2) - Zr(1) - S(1)	125.5(2)	Cl(2) - Zr(1) - N(2)	87.3(4)		
Cl(2) - Zr(1) - N(1)	143.8(4)	S(1) - Zr(1) - S(2)	75.5(2)		
S(1) - Zr(1) - N(1)	36.4(4)	S(1) - Zr(1) - N(2)	39.0(4)		
S(2) - Zr(1) - N(2)	68.5(4)	S(2) - Zr(1) - N(1)	69.5(4)		
N(1) - Zr(1) - N(2)	72.1(6)	Zr(1) - S(1) - N(1)	53.9(6)		
Zr(1) - S(1) - N(2)	54.0(6)	N(1) - S(1) - N(2)	102.1(8)		
Zr(1) - S(2) - N(3)	108.3(6)	Zr(1) - S(2) - N(4)	110.0(6)		
N(2) - P(2) - N(3)	117.5(9)	N(3)-S(2)-N(4)	112.6(9)		
Zr(1) - N(1) - S(1)	89.8(7)	N(1) - P(1) - N(4)	117.1(8)		
S(1) - N(1) - P(1)	117.1(9)	Zr(1) - N(1) - P(1)	121.7(8)		
Zr(1) = N(2) = P(2)	125.8(10)	Zr(1) - N(2) - S(1)	87.1(6)		
S(2) = N(3) = P(2)	113.2(10)	S(1) - N(2) - P(2)	114(1)		
		S(2) = N(4) = P(1)	110.0(9)		

zirconium analogue {Cp*ZrCl₂[Ph₄P₂N₄S(SMe)]}, **6b**, is obtained in *ca.* 90% yield from Cp*ZrCl₃ in a similar manner. Both **6a** and **6b** exhibit singlets in the ³¹P NMR spectra at *ca.* 68 ppm, suggesting that the methyl group is attached to sulfur and the P₂N₄S₂ ligand is bonded symmetrically to the metal. An X-ray structural determination of **6b** has confirmed these inferences and revealed that the S-methylated ligand **2b** (R = Me) is coordinated to zirconium in a tetradentate (η^{4} -N,N',S,S') bonding mode. An ORTEP drawing of **6b** is depicted in Figure 3. Pertinent bond lengths and bond angles are summarized in Table 6. The metal-ligand bond distances are Zr(1)-N(1) = 2.27(2), Zr(1)-N(2) = 2.27(2), Zr(1)-S(1) = 2.810(6), and

Figure 4. ORTEP diagram for [Me₃PNPPh₂NSMeNPPh₂H₂]Cl showing the atomic numbering scheme.

Zr(1)-S(2) = 2.919(6) Å, indicating moderately strong Zr-N and weak Zr-S bonding interactions as found for **4a**.

The methylation of **3a** with methyl iodide proceeded more slowly than the corresponding reaction of methyl triflate, thus enabling the progress of the reaction to be monitored by ³¹P NMR spectroscopy. An intermediate was detected, which exhibits mutually coupled doublets (${}^{4}J_{P_{A}-P_{B}} = 22.9$ Hz) at 74.5 and 82.2 ppm, in addition to the singlet for **6a** at 68.4 ppm. After 2 days the pair of doublets and the resonance at 77.5 ppm attributable to **3a** had disappeared to give **6a** as the only product. We propose that this intermediate is the N-methylated isomer of {Cp*HfCl₂[Ph₄P₂N₃(NMe)S₂]} (see **5** (M = Hf) in Scheme 1).

Reaction of {Cp*ZrCl₂[Ph₄P₂N₄S(SMe)]} with Me₃P. In view of the apparent weakness of the metal-sulfur interactions in the tetradentate complexes {Cp*MCl₂[Ph₄P₂N₄S(SMe)]} (M = Zr, Hf), we have investigated the reaction of **6b** with an excess of trimethylphosphine. The reaction was monitored by ³¹P NMR spectroscopy, and an intermediate, which exhibited four resonances of approximately equal intensity at 27.8, 23.1, 9.6, and -4.4 ppm, was detected. It seems reasonable to conclude that 2 equiv of Me₃P is taken up by **6b** to give a product with inequivalent heterocyclic PPh₂ groups, e.g. 7.

However, further characterization of this intermediate was precluded by its extreme sensitivity to traces of moisture, resulting in the formation of the acyclic compound **8**, which was identified by X-ray crystallography (*vide infra*). The deliberate addition of water to the reaction mixture also produced **8**, which was detected by ³¹P NMR. Apparently one of the Me₃P ligands abstracts a sulfur atom from the P₂N₄S₂ ring while the other serves as a chain-terminating group for the acyclic fragment so formed.

X-ray Structure of [Me₃PNPPh₂NSMeNPPh₂NH₂]Cl (7). An ORTEP drawing of 7 with the atomic numbering scheme is shown in Figure 4. Selected bond distances and bond angles are given in Table 7. The P-N and S-N bond distances along

Table 7. Selected Bond Distances (Å) and Bond Angles (deg) for $[Me_3PNPPh_2NSMeNPPh_2NH_2]Cl$

Bond Distances					
S(1) = N(2)	1.616(9)	S(1) - N(3)	1.598(9)		
S(1) - C(28)	1.75(1)	P(1) - N(1)	1.649(9)		
P(1) - N(2)	1.597(9)	P(1) - C(1)	1.80(1)		
P(1) - C(7)	1.79(1)	P(2) - N(3)	1.622(9)		
P(2) - N(4)	1.584(9)	P(2) - C(13)	1.79(1)		
P(2) - C(19)	1.80(1)	P(3) - N(4)	1.57(1)		
P(3) - C(25)	1.78(1)	P(3) - C(26)	1.78(1)		
P(3) - C(27)	1.76(1)				
	Bond A	Angles			
N(2) - S(1) - N(3)	107.0(5)	$\tilde{N}(2) - S(1) - C(28)$	101.0(5)		
N(3)-S(1)-C(28)	99.4(5)	N(1) - P(1) - N(2)	111.7(5)		
N(1) - P(1) - C(1)	114.2(6)	N(1) - P(1) - C(7)	104.1(7)		
N(2) - P(1) - C(1)	103.5(6)	N(2) - P(1) - C(7)	115.6(6)		
C(1) - P(1) - C(7)	107.9(7)	N(3) - P(2) - N(4)	119.4(5)		
N(3) - P(2) - C(13)	110.0(6)	N(3) - P(2) - C(19)	103.8(6)		
N(4) - P(2) - C(13)	104.4(7)	N(4) - P(2) - C(19)	111.0(6)		
C(13) - P(2) - C(19)	108.1(7)	N(4) - P(3) - C(25)	110.7(6)		
N(4) - P(3) - C(26)	116.3(6)	N(4) - P(3) - C(27)	111.3(7)		
C(25) - P(3) - C(26)	107.1(7)	C(25) - P(3) - C(27)	105.2(6)		
C(26) - P(3) - C(27)	105.6(6)	S(1) - N(2) - P(1)	119.5(6)		
S(1) - N(3) - P(2)	120.4(6)	P(2) - N(4) - P(3)	134.5(7)		

the eight-atom chain follow the sequence 1.57(1), 1.584(9), 1.622(9), 1.598(9), 1.616(9), 1.597(9), 1.649(9) Å, suggesting extensive delocalization of the positive charge along the entire chain.

Conclusions. One of the chloride ligands in Cp*MCl₃ (M = Zr, Hf) can be replaced by the dianion Ph₄P₂N₄S₂²⁻ to give complexes of the type Na[Cp*MCl₂(Ph₄P₂N₄S₂)]. The protonation of these sodium salts produces the N-protonated derivatives {Cp*MCl₂[Ph₄P₂N₃(NH)S₂]}₂, which exist as hydrogenbonded dimers in the solid state, whereas methylation yields the S-methylated complexes {Cp*MCl₂[Ph₄P₂N₄S(SMe)]} via their N-methylated isomers. In both the N-protonated and S-methylated complexes the Ph₄P₂N₄S₂R⁻ ligand is coordinated to the group 4 metal in a tetradentate (η^4 -N,N',S,S') bonding mode, thus providing further evidence of the adaptability of these heterocyclic ligands to the electronic requirements of the metal center. This mode of coordination activates the opening of the P₂N₄S₂ ring in the reaction with Me₃P.

Acknowledgment. We thank the NSERC (Canada) for financial support. We also acknowledge the contributions of Dr. R. W. Hilts for carrying out some preliminary experiments and Ian Krouse for assistance with the X-ray structure determination of **6b**.

Supplementary Material Available: Listings of crystal data, bond lengths and bond angles, anisotropic temperature factors, and torsion angles for 4a, 6b, and 8 (23 pages). Ordering information is given on any current masthead page.

IC941130+